Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 실시간 시계
- flask
- 명령어
- OpenCV + Flask
- #ifdef
- #undef
- Action
- 튜토리얼
- DB 데이터 저장
- DB 데이터
- 성능지표
- heroku
- MySQL 세팅
- href
- jinja2
- javascript
- bootstrap
- PyQt5
- 사이트 도메인
- VS Code
- 콘솔 가상환경 # 콘솔 #가상환경
- #else
- #if
- Django
- #endif
- bootstrap4 패키지
- OpenCV
- #ifndef
- openweathermap
- 환경변수 설정
Archives
- Today
- Total
PROGRAMMING
YOLO(Darknet Setup - Colab / cuDNN) 본문
In [ ]:
In [1]:
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In [ ]:
!ls
drive sample_data
3. Install CUDA related modules, cuDNN¶
Download cuDNN file https://developer.nvidia.com/rdp/cudnn-download
Unzip the cuDNN from Google Drive to Colab /usr/local/cuda folder
In [ ]:
!/usr/local/cuda/bin/nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
In [ ]:
!tar -xzvf drive/MyDrive/darknet/cuDNN/cudnn-10.1-linux-x64-v7.6.5.32.tgz -C /usr/local/
!chmod a+r /usr/local/cuda/include/cudnn.h
cuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.6.5
cuda/lib64/libcudnn_static.a
In [ ]:
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In [ ]:
!cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 5
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"
4. Install DarkNet¶
DarkNet Install https://pjreddie.com/darknet/install/
In [ ]:
!git clone https://github.com/kriyeng/darknet/
%cd darknet
Cloning into 'darknet'...
remote: Enumerating objects: 10068, done.
remote: Total 10068 (delta 0), reused 0 (delta 0), pack-reused 10068
Receiving objects: 100% (10068/10068), 10.13 MiB | 23.30 MiB/s, done.
Resolving deltas: 100% (6742/6742), done.
/content/darknet
In [ ]:
!ls
3rdparty CMakeLists.txt image_yolov3.sh scripts
appveyor.yml CMakeSettings.json include src
build DarknetConfig.cmake.in json_mjpeg_streams.sh video_v2.sh
build.ps1 darknet.py LICENSE video_yolov3.sh
build.sh darknet_video.py Makefile
cfg data net_cam_v3.sh
cmake image_yolov2.sh README.md
In [ ]:
!git checkout feature/google-colab
Branch 'feature/google-colab' set up to track remote branch 'feature/google-colab' from 'origin'.
Switched to a new branch 'feature/google-colab'
In [ ]:
# Compile DarkNet
!make
mkdir -p obj
mkdir -p backup
mkdir -p results
chmod +x *.sh
g++ -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/image_opencv.cpp -o obj/image_opencv.o
./src/image_opencv.cpp: In function ‘void draw_detections_cv_v3(mat_cv*, detection*, int, float, char**, image**, int, int)’:
./src/image_opencv.cpp:896:23: warning: variable ‘rgb’ set but not used [-Wunused-but-set-variable]
float rgb[3];
^~~
g++ -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/http_stream.cpp -o obj/http_stream.o
./src/http_stream.cpp: In member function ‘bool JSON_sender::write(const char*)’:
./src/http_stream.cpp:228:21: warning: unused variable ‘n’ [-Wunused-variable]
int n = _write(client, outputbuf, outlen);
^
./src/http_stream.cpp: In member function ‘bool MJPG_sender::write(const cv::Mat&)’:
./src/http_stream.cpp:475:23: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
if (n < outlen)
~~^~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/gemm.c -o obj/gemm.o
./src/gemm.c: In function ‘convolution_2d’:
./src/gemm.c:2016:15: warning: unused variable ‘out_w’ [-Wunused-variable]
const int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1
^~~~~
./src/gemm.c:2015:15: warning: unused variable ‘out_h’ [-Wunused-variable]
const int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1
^~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/utils.c -o obj/utils.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/dark_cuda.c -o obj/dark_cuda.o
./src/dark_cuda.c: In function ‘get_cuda_stream’:
./src/dark_cuda.c:120:18: warning: unused variable ‘buffer’ [-Wunused-variable]
char buffer[256];
^~~~~~
./src/dark_cuda.c: In function ‘get_cuda_memcpy_stream’:
./src/dark_cuda.c:141:18: warning: unused variable ‘buffer’ [-Wunused-variable]
char buffer[256];
^~~~~~
./src/dark_cuda.c: In function ‘cudnn_handle’:
./src/dark_cuda.c:161:23: warning: unused variable ‘status’ [-Wunused-variable]
cudnnStatus_t status = cudnnSetStream(handle[i], get_cuda_stream());
^~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/convolutional_layer.c -o obj/convolutional_layer.o
./src/convolutional_layer.c: In function ‘forward_convolutional_layer’:
./src/convolutional_layer.c:951:28: warning: unused variable ‘t_intput_size’ [-Wunused-variable]
size_t t_intput_size = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align);
^~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/list.c -o obj/list.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/image.c -o obj/image.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/activations.c -o obj/activations.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/im2col.c -o obj/im2col.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/col2im.c -o obj/col2im.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/blas.c -o obj/blas.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/crop_layer.c -o obj/crop_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/dropout_layer.c -o obj/dropout_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/maxpool_layer.c -o obj/maxpool_layer.o
./src/maxpool_layer.c: In function ‘cudnn_maxpool_setup’:
./src/maxpool_layer.c:26:19: warning: variable ‘maxpool_status’ set but not used [-Wunused-but-set-variable]
cudnnStatus_t maxpool_status;
^~~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/softmax_layer.c -o obj/softmax_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/data.c -o obj/data.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/matrix.c -o obj/matrix.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/network.c -o obj/network.o
./src/network.c: In function ‘resize_network’:
./src/network.c:511:42: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess == cudaHostAlloc(&net->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped))
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/network.c:1:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/connected_layer.c -o obj/connected_layer.o
./src/connected_layer.c: In function ‘forward_connected_layer_gpu’:
./src/connected_layer.c:335:11: warning: unused variable ‘one’ [-Wunused-variable]
float one = 1; // alpha[0], beta[0]
^~~
./src/connected_layer.c:333:13: warning: unused variable ‘c’ [-Wunused-variable]
float * c = l.output_gpu;
^
./src/connected_layer.c:332:13: warning: unused variable ‘b’ [-Wunused-variable]
float * b = l.weights_gpu;
^
./src/connected_layer.c:331:13: warning: unused variable ‘a’ [-Wunused-variable]
float * a = state.input;
^
./src/connected_layer.c:330:9: warning: unused variable ‘n’ [-Wunused-variable]
int n = l.outputs;
^
./src/connected_layer.c:329:9: warning: unused variable ‘k’ [-Wunused-variable]
int k = l.inputs;
^
./src/connected_layer.c:328:9: warning: unused variable ‘m’ [-Wunused-variable]
int m = l.batch;
^
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/cost_layer.c -o obj/cost_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/parser.c -o obj/parser.o
./src/parser.c: In function ‘parse_network_cfg_custom’:
./src/parser.c:874:42: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess == cudaHostAlloc(&net.input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) net.input_pinned_cpu_flag = 1;
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/activations.h:3,
from ./src/activation_layer.h:4,
from ./src/parser.c:6:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/option_list.c -o obj/option_list.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/darknet.c -o obj/darknet.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/detection_layer.c -o obj/detection_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/captcha.c -o obj/captcha.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/route_layer.c -o obj/route_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/writing.c -o obj/writing.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/box.c -o obj/box.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/nightmare.c -o obj/nightmare.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/normalization_layer.c -o obj/normalization_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/avgpool_layer.c -o obj/avgpool_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/coco.c -o obj/coco.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/dice.c -o obj/dice.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/yolo.c -o obj/yolo.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/detector.c -o obj/detector.o
./src/detector.c: In function ‘validate_detector_map’:
./src/detector.c:1008:15: warning: unused variable ‘class_recall’ [-Wunused-variable]
float class_recall = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)(truth_classes_count[i] - tp_for_thresh_per_class[i]));
^~~~~~~~~~~~
./src/detector.c:1007:15: warning: unused variable ‘class_precision’ [-Wunused-variable]
float class_precision = (float)tp_for_thresh_per_class[i] / ((float)tp_for_thresh_per_class[i] + (float)fp_for_thresh_per_class[i]);
^~~~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/layer.c -o obj/layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/compare.c -o obj/compare.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/classifier.c -o obj/classifier.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/local_layer.c -o obj/local_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/swag.c -o obj/swag.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/shortcut_layer.c -o obj/shortcut_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/activation_layer.c -o obj/activation_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/rnn_layer.c -o obj/rnn_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/gru_layer.c -o obj/gru_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/rnn.c -o obj/rnn.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/rnn_vid.c -o obj/rnn_vid.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/crnn_layer.c -o obj/crnn_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/demo.c -o obj/demo.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/tag.c -o obj/tag.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/cifar.c -o obj/cifar.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/go.c -o obj/go.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/batchnorm_layer.c -o obj/batchnorm_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/art.c -o obj/art.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/region_layer.c -o obj/region_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/reorg_layer.c -o obj/reorg_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/reorg_old_layer.c -o obj/reorg_old_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/super.c -o obj/super.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/voxel.c -o obj/voxel.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/tree.c -o obj/tree.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/yolo_layer.c -o obj/yolo_layer.o
./src/yolo_layer.c: In function ‘make_yolo_layer’:
./src/yolo_layer.c:58:38: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/activations.h:3,
from ./src/layer.h:4,
from ./src/yolo_layer.h:5,
from ./src/yolo_layer.c:1:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
./src/yolo_layer.c:65:38: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/activations.h:3,
from ./src/layer.h:4,
from ./src/yolo_layer.h:5,
from ./src/yolo_layer.c:1:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
./src/yolo_layer.c: In function ‘resize_yolo_layer’:
./src/yolo_layer.c:92:42: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/activations.h:3,
from ./src/layer.h:4,
from ./src/yolo_layer.h:5,
from ./src/yolo_layer.c:1:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
./src/yolo_layer.c:101:42: warning: passing argument 1 of ‘cudaHostAlloc’ from incompatible pointer type [-Wincompatible-pointer-types]
if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
^
In file included from /usr/local/cuda/include/cuda_runtime.h:96:0,
from include/darknet.h:40,
from ./src/activations.h:3,
from ./src/layer.h:4,
from ./src/yolo_layer.h:5,
from ./src/yolo_layer.c:1:
/usr/local/cuda/include/cuda_runtime_api.h:4391:39: note: expected ‘void **’ but argument is of type ‘float **’
extern __host__ cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t size, unsigned int flags);
^~~~~~~~~~~~~
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/upsample_layer.c -o obj/upsample_layer.o
gcc -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include -c ./src/lstm_layer.c -o obj/lstm_layer.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/convolutional_kernels.cu -o obj/convolutional_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/activation_kernels.cu -o obj/activation_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/im2col_kernels.cu -o obj/im2col_kernels.o
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
./src/im2col_kernels.cu:125:18: warning: "/*" within comment [-Wcomment]
//*data_col_ptr = (h >= 0 && w >= 0 && h < height && w < width) ?
./src/im2col_kernels.cu:1178:6: warning: "/*" within comment [-Wcomment]
//*((uint64_t *)(A_s + (local_i*lda + k) / 8)) = *((uint64_t *)(A + (i_cur*lda + k) / 8)); // weights
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/col2im_kernels.cu -o obj/col2im_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/blas_kernels.cu -o obj/blas_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/crop_layer_kernels.cu -o obj/crop_layer_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/dropout_layer_kernels.cu -o obj/dropout_layer_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/maxpool_layer_kernels.cu -o obj/maxpool_layer_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/network_kernels.cu -o obj/network_kernels.o
nvcc -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] -gencode arch=compute_61,code=[sm_61,compute_61] -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN --compiler-options "-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include" -c ./src/avgpool_layer_kernels.cu -o obj/avgpool_layer_kernels.o
g++ -std=c++11 -Iinclude/ -I3rdparty/stb/include -DOPENCV `pkg-config --cflags opencv` -DGPU -I/usr/local/cuda/include/ -DCUDNN -Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -Ofast -DOPENCV -DGPU -DCUDNN -I/usr/local/cudnn/include obj/image_opencv.o obj/http_stream.o obj/gemm.o obj/utils.o obj/dark_cuda.o obj/convolutional_layer.o obj/list.o obj/image.o obj/activations.o obj/im2col.o obj/col2im.o obj/blas.o obj/crop_layer.o obj/dropout_layer.o obj/maxpool_layer.o obj/softmax_layer.o obj/data.o obj/matrix.o obj/network.o obj/connected_layer.o obj/cost_layer.o obj/parser.o obj/option_list.o obj/darknet.o obj/detection_layer.o obj/captcha.o obj/route_layer.o obj/writing.o obj/box.o obj/nightmare.o obj/normalization_layer.o obj/avgpool_layer.o obj/coco.o obj/dice.o obj/yolo.o obj/detector.o obj/layer.o obj/compare.o obj/classifier.o obj/local_layer.o obj/swag.o obj/shortcut_layer.o obj/activation_layer.o obj/rnn_layer.o obj/gru_layer.o obj/rnn.o obj/rnn_vid.o obj/crnn_layer.o obj/demo.o obj/tag.o obj/cifar.o obj/go.o obj/batchnorm_layer.o obj/art.o obj/region_layer.o obj/reorg_layer.o obj/reorg_old_layer.o obj/super.o obj/voxel.o obj/tree.o obj/yolo_layer.o obj/upsample_layer.o obj/lstm_layer.o obj/convolutional_kernels.o obj/activation_kernels.o obj/im2col_kernels.o obj/col2im_kernels.o obj/blas_kernels.o obj/crop_layer_kernels.o obj/dropout_layer_kernels.o obj/maxpool_layer_kernels.o obj/network_kernels.o obj/avgpool_layer_kernels.o -o darknet -lm -pthread `pkg-config --libs opencv` -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand -L/usr/local/cudnn/lib64 -lcudnn -lstdc++
In [ ]:
import os
if not os.path.exists('/content/drive/MyDrive/darknet/bin'):
os.makedirs('/content/drive/MyDrive/darknet/bin')
In [ ]:
!cp ./darknet /content/drive/MyDrive/darknet/bin/darknet
In [ ]:
# Use compiled darkent in your Google Drive after the first compile
# 1. Makes a darknet directory
#!mkdir darknet
#%cd darknet
# 2. Copy the Darkent compiled version to the VM
#!cp /content/drive/MyDrive/darknet/bin/darknet ./darknet
# 3. Set execution permissions
#!chmod +x ./darknet
In [ ]:
def imShow(path):
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
image = cv2.imread(path)
height, width = image.shape[:2]
resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC)
fig = plt.gcf()
fig.set_size_inches(18, 10)
plt.axis("off")
#plt.rcParams['figure.figsize'] = [10, 5]
plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()
def upload():
from google.colab import files
uploaded = files.upload()
for name, data in uploaded.items():
with open(name, 'wb') as f:
f.write(data)
print ('saved file', name)
def download(path):
from google.colab import files
files.download(path)
In [ ]:
%ls
3rdparty/ CMakeLists.txt image_yolov3.sh* results/
appveyor.yml CMakeSettings.json include/ scripts/
backup/ darknet* json_mjpeg_streams.sh* src/
build/ DarknetConfig.cmake.in LICENSE video_v2.sh*
build.ps1* darknet.py Makefile video_yolov3.sh*
build.sh* darknet_video.py net_cam_v3.sh* weights/
cfg/ data/ obj/
cmake/ image_yolov2.sh* README.md
In [ ]:
!cp -r "/content/drive/MyDrive/darknet/weights" ./weights
In [ ]:
%ls
3rdparty/ CMakeLists.txt image_yolov3.sh* results/
appveyor.yml CMakeSettings.json include/ scripts/
backup/ darknet* json_mjpeg_streams.sh* src/
build/ DarknetConfig.cmake.in LICENSE video_v2.sh*
build.ps1* darknet.py Makefile video_yolov3.sh*
build.sh* darknet_video.py net_cam_v3.sh* weights/
cfg/ data/ obj/
cmake/ image_yolov2.sh* README.md
5. Test YOLO¶
In [ ]:
!./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg
imShow('predictions.jpg')
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF
4 Shortcut Layer: 1
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
8 Shortcut Layer: 5
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
11 Shortcut Layer: 8
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
15 Shortcut Layer: 12
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
18 Shortcut Layer: 15
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
21 Shortcut Layer: 18
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
24 Shortcut Layer: 21
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
27 Shortcut Layer: 24
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
30 Shortcut Layer: 27
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
33 Shortcut Layer: 30
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
36 Shortcut Layer: 33
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
40 Shortcut Layer: 37
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
43 Shortcut Layer: 40
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
46 Shortcut Layer: 43
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
49 Shortcut Layer: 46
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
52 Shortcut Layer: 49
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
55 Shortcut Layer: 52
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
58 Shortcut Layer: 55
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
61 Shortcut Layer: 58
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF
63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
65 Shortcut Layer: 62
66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
68 Shortcut Layer: 65
69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
71 Shortcut Layer: 68
72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
74 Shortcut Layer: 71
75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
81 conv 255 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 255 0.088 BF
82 yolo
83 route 79
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF
85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
93 conv 255 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 255 0.177 BF
94 yolo
95 route 91
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF
97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BF
106 yolo
Total BFLOPS 65.864
Allocate additional workspace_size = 52.43 MB
Loading weights from weights/yolov3.weights...
seen 64
Done!
data/dog.jpg: Predicted in 41.786000 milli-seconds.
bicycle: 99%
dog: 100%
truck: 94%
Unable to init server: Could not connect: Connection refused
(predictions:1666): Gtk-WARNING **: 02:59:48.785: cannot open display:
In [ ]:
!./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/person.jpg
imShow('predictions.jpg')
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF
4 Shortcut Layer: 1
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
8 Shortcut Layer: 5
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
11 Shortcut Layer: 8
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
15 Shortcut Layer: 12
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
18 Shortcut Layer: 15
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
21 Shortcut Layer: 18
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
24 Shortcut Layer: 21
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
27 Shortcut Layer: 24
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
30 Shortcut Layer: 27
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
33 Shortcut Layer: 30
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
36 Shortcut Layer: 33
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
40 Shortcut Layer: 37
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
43 Shortcut Layer: 40
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
46 Shortcut Layer: 43
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
49 Shortcut Layer: 46
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
52 Shortcut Layer: 49
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
55 Shortcut Layer: 52
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
58 Shortcut Layer: 55
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
61 Shortcut Layer: 58
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF
63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
65 Shortcut Layer: 62
66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
68 Shortcut Layer: 65
69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
71 Shortcut Layer: 68
72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
74 Shortcut Layer: 71
75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
81 conv 255 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 255 0.088 BF
82 yolo
83 route 79
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF
85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
93 conv 255 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 255 0.177 BF
94 yolo
95 route 91
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF
97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BF
106 yolo
Total BFLOPS 65.864
Allocate additional workspace_size = 52.43 MB
Loading weights from weights/yolov3.weights...
seen 64
Done!
data/person.jpg: Predicted in 41.907000 milli-seconds.
dog: 99%
person: 100%
horse: 100%
Unable to init server: Could not connect: Connection refused
(predictions:1684): Gtk-WARNING **: 03:00:07.060: cannot open display:
In [ ]:
'OpenCV > 머신비전 - 이미지 디텍팅' 카테고리의 다른 글
YOLO (Selective Search, IOU) (0) | 2021.01.14 |
---|---|
YOLO(Game 결과 이미지) (0) | 2021.01.02 |
YOLO(Game) (0) | 2021.01.02 |
훈련 데이터 카메라 영상 적용 (0) | 2020.12.28 |
YOLO (gum, milk, chocolate) 추가 자료 (0) | 2020.12.24 |
Comments