- 블로그 방문을 환영합니다. (255)
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- jinja2
- openweathermap
- 명령어
- 환경변수 설정
- 성능지표
- heroku
- DB 데이터 저장
- DB 데이터
- javascript
- #endif
- VS Code
- bootstrap
- #undef
- bootstrap4 패키지
- #ifndef
- 실시간 시계
- #else
- MySQL 세팅
- PyQt5
- #ifdef
- 콘솔 가상환경 # 콘솔 #가상환경
- OpenCV
- flask
- #if
- Action
- 사이트 도메인
- href
- OpenCV + Flask
- 튜토리얼
- Django
Archives
- Today
- Total
PROGRAMMING
YOLO (apple, orange / 교육) 본문
1. Mount Google Drive¶
In [1]:
from google.colab import drive
drive.mount('/content/drive')
Mounted at /content/drive
In [8]:
!ls -la "/content/drive/MyDrive/darknet"
total 24 drwx------ 2 root root 4096 Dec 22 21:36 bin drwx------ 2 root root 4096 Dec 22 23:01 cfg drwx------ 2 root root 4096 Dec 22 21:38 cuDNN drwx------ 3 root root 4096 Dec 22 23:01 data drwx------ 2 root root 4096 Dec 22 21:36 .ipynb_checkpoints drwx------ 2 root root 4096 Dec 22 21:44 weights
In [9]:
!ls -la /usr/local/cuda/include/cudnn.h
-r--r--r-- 1 root root 134857 Sep 26 2019 /usr/local/cuda/include/cudnn.h
2. Install CUDA related modules, cuDNN¶
Unzip the cuDNN from Google Drive to Colab /usr/local/cuda folder
In [10]:
!tar -xzvf /content/drive/MyDrive/darknet/cuDNN/cudnn-10.1-linux-x64-v7.6.5.32.tgz -C /usr/local/
!chmod a+r /usr/local/cuda/include/cudnn.h
!cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
cuda/include/cudnn.h cuda/NVIDIA_SLA_cuDNN_Support.txt cuda/lib64/libcudnn.so cuda/lib64/libcudnn.so.7 cuda/lib64/libcudnn.so.7.6.5 cuda/lib64/libcudnn_static.a #define CUDNN_MAJOR 7 #define CUDNN_MINOR 6 #define CUDNN_PATCHLEVEL 5 -- #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL) #include "driver_types.h"
3. Load DarkNet¶
In [4]:
import os
if not os.path.exists('darknet'):
os.makedirs('darknet')
%cd darknet
%ls
/content/darknet
In [11]:
!ls -la '/content/drive/MyDrive/darknet/bin/darknet'
!cp /content/drive/MyDrive/darknet/bin/darknet ./darknet
!chmod +x ./darknet
-rw------- 1 root root 3213624 Dec 22 21:37 /content/drive/MyDrive/darknet/bin/darknet
4. Test Yolo¶
In [12]:
!cp -r '/content/drive/MyDrive/darknet/weights' .
!cp -r '/content/drive/MyDrive/darknet/cfg' .
!cp -ar '/content/drive/MyDrive/darknet/data' .
%ls
cfg/ darknet* data/ weights/
In [13]:
def imShow(path):
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
image = cv2.imread(path)
height, width = image.shape[:2]
resized_image = cv2.resize(image,(3*width, 3*height), interpolation = cv2.INTER_CUBIC)
fig = plt.gcf()
fig.set_size_inches(18, 10)
plt.axis("off")
#plt.rcParams['figure.figsize'] = [10, 5]
plt.imshow(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
plt.show()
def upload():
from google.colab import files
uploaded = files.upload()
for name, data in uploaded.items():
with open(name, 'wb') as f:
f.write(data)
print ('saved file', name)
def download(path):
from google.colab import files
files.download(path)
In [14]:
!./darknet detect cfg/yolov3.cfg weights/yolov3.weights data/fruit10.jpg
imShow('predictions.jpg')
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 255 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 255 0.088 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 255 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 255 0.177 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 255 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 255 0.353 BF 106 yolo Total BFLOPS 65.864 Allocate additional workspace_size = 52.43 MB Loading weights from weights/yolov3.weights... seen 64 Done! data/fruit10.jpg: Predicted in 41.828000 milli-seconds. orange: 99% orange: 59% apple: 85% orange: 99% Unable to init server: Could not connect: Connection refused (predictions:450): Gtk-WARNING **: 23:08:49.618: cannot open display:
5. Custom Yolo¶
In [17]:
!cp -r "/content/drive/MyDrive/darknet/custom" .
아래를 누르면 아주 긴 시간 동안 학습하게 됨¶
In [ ]:
!./darknet detector train custom/custom_data.data custom/custom-train-yolo.cfg weights/darknet53.conv.74 -dont_show
custom-train-yolo layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from weights/darknet53.conv.74... seen 64 Done! Warning: You set batch=32 lower than 64! It is recommended to set batch=64 subdivision=64 Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005 Resizing 608 x 608 try to allocate additional workspace_size = 108.69 MB CUDA allocate done! Loaded: 1.363494 seconds 1: 1874.486450, 1874.486450 avg loss, 0.000000 rate, 4.645283 seconds, 32 images Loaded: 0.167962 seconds 2: 1873.601929, 1874.397949 avg loss, 0.000000 rate, 4.587090 seconds, 64 images Loaded: 0.172551 seconds 3: 1872.306152, 1874.188721 avg loss, 0.000000 rate, 4.604361 seconds, 96 images Loaded: 0.103026 seconds 4: 1873.848022, 1874.154663 avg loss, 0.000000 rate, 4.703347 seconds, 128 images Loaded: 0.029995 seconds 5: 1873.857788, 1874.125000 avg loss, 0.000000 rate, 4.806937 seconds, 160 images Loaded: 0.000041 seconds 6: 1872.471313, 1873.959595 avg loss, 0.000000 rate, 4.846819 seconds, 192 images Loaded: 0.000034 seconds 7: 1872.012573, 1873.764893 avg loss, 0.000000 rate, 4.917636 seconds, 224 images Loaded: 0.000040 seconds 8: 1871.453247, 1873.533691 avg loss, 0.000000 rate, 4.951915 seconds, 256 images Loaded: 0.000040 seconds 9: 1873.198608, 1873.500244 avg loss, 0.000000 rate, 4.973237 seconds, 288 images Loaded: 0.000042 seconds 10: 1874.567993, 1873.607056 avg loss, 0.000000 rate, 5.029345 seconds, 320 images Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 3.362629 seconds 11: 1500.653931, 1836.311768 avg loss, 0.000000 rate, 4.252978 seconds, 352 images Loaded: 0.282405 seconds 12: 1501.095581, 1802.790161 avg loss, 0.000000 rate, 4.167760 seconds, 384 images Loaded: 0.349002 seconds 13: 1499.952393, 1772.506348 avg loss, 0.000000 rate, 4.227568 seconds, 416 images Loaded: 0.362561 seconds 14: 1499.190674, 1745.174805 avg loss, 0.000000 rate, 4.260640 seconds, 448 images Loaded: 0.304504 seconds 15: 1499.838745, 1720.641235 avg loss, 0.000000 rate, 4.286100 seconds, 480 images Loaded: 0.270931 seconds 16: 1499.627319, 1698.539795 avg loss, 0.000000 rate, 4.326952 seconds, 512 images Loaded: 0.258509 seconds 17: 1498.648438, 1678.550659 avg loss, 0.000000 rate, 4.361765 seconds, 544 images Loaded: 0.213899 seconds 18: 1498.489380, 1660.544556 avg loss, 0.000000 rate, 4.400581 seconds, 576 images Loaded: 0.138625 seconds 19: 1499.743286, 1644.464478 avg loss, 0.000000 rate, 4.442517 seconds, 608 images Loaded: 0.087263 seconds 20: 1499.915894, 1630.009644 avg loss, 0.000000 rate, 4.484985 seconds, 640 images Resizing 352 x 352 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 2.695915 seconds 21: 631.258118, 1530.134521 avg loss, 0.000000 rate, 2.010143 seconds, 672 images Loaded: 2.083407 seconds 22: 629.917053, 1440.112793 avg loss, 0.000000 rate, 1.985406 seconds, 704 images Loaded: 2.104342 seconds 23: 630.067505, 1359.108276 avg loss, 0.000000 rate, 1.997155 seconds, 736 images Loaded: 2.034616 seconds 24: 629.935181, 1286.190918 avg loss, 0.000000 rate, 1.989491 seconds, 768 images Loaded: 2.002633 seconds 25: 629.285522, 1220.500366 avg loss, 0.000000 rate, 1.951859 seconds, 800 images Loaded: 2.065752 seconds 26: 630.179565, 1161.468262 avg loss, 0.000000 rate, 1.977708 seconds, 832 images Loaded: 2.153957 seconds 27: 629.511108, 1108.272583 avg loss, 0.000000 rate, 1.991136 seconds, 864 images Loaded: 2.068506 seconds 28: 628.575745, 1060.302856 avg loss, 0.000000 rate, 1.955530 seconds, 896 images Loaded: 2.115319 seconds 29: 628.781921, 1017.150757 avg loss, 0.000000 rate, 1.964389 seconds, 928 images Loaded: 2.043752 seconds 30: 629.131775, 978.348877 avg loss, 0.000000 rate, 1.989250 seconds, 960 images Resizing 352 x 352 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.562863 seconds 31: 629.188904, 943.432861 avg loss, 0.000000 rate, 2.005354 seconds, 992 images Loaded: 1.989636 seconds 32: 628.645874, 911.954163 avg loss, 0.000000 rate, 1.981603 seconds, 1024 images Loaded: 2.082400 seconds 33: 629.026672, 883.661438 avg loss, 0.000000 rate, 2.014967 seconds, 1056 images Loaded: 2.098704 seconds 34: 628.673645, 858.162659 avg loss, 0.000000 rate, 1.999370 seconds, 1088 images Loaded: 2.032523 seconds 35: 628.562927, 835.202698 avg loss, 0.000000 rate, 2.004468 seconds, 1120 images Loaded: 1.980003 seconds 36: 627.727600, 814.455200 avg loss, 0.000000 rate, 2.038285 seconds, 1152 images Loaded: 1.991357 seconds 37: 628.312500, 795.840942 avg loss, 0.000000 rate, 2.043637 seconds, 1184 images Loaded: 1.977712 seconds 38: 627.538879, 779.010742 avg loss, 0.000000 rate, 2.025044 seconds, 1216 images Loaded: 2.026318 seconds 39: 627.417847, 763.851440 avg loss, 0.000000 rate, 2.020436 seconds, 1248 images Loaded: 2.010043 seconds 40: 626.086731, 750.074951 avg loss, 0.000000 rate, 1.994252 seconds, 1280 images Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 1.685651 seconds 41: 1489.795166, 824.046997 avg loss, 0.000000 rate, 4.347408 seconds, 1312 images Loaded: 0.302650 seconds 42: 1487.847778, 890.427063 avg loss, 0.000000 rate, 4.293712 seconds, 1344 images Loaded: 0.251668 seconds 43: 1486.417114, 950.026062 avg loss, 0.000000 rate, 4.301047 seconds, 1376 images Loaded: 0.184303 seconds 44: 1485.891357, 1003.612610 avg loss, 0.000000 rate, 4.339316 seconds, 1408 images Loaded: 0.200205 seconds 45: 1483.928589, 1051.644165 avg loss, 0.000000 rate, 4.351284 seconds, 1440 images Loaded: 0.150421 seconds 46: 1481.571655, 1094.636963 avg loss, 0.000000 rate, 4.350120 seconds, 1472 images Loaded: 0.134612 seconds 47: 1477.576416, 1132.930908 avg loss, 0.000000 rate, 4.392931 seconds, 1504 images Loaded: 0.163153 seconds 48: 1477.783936, 1167.416260 avg loss, 0.000000 rate, 4.324373 seconds, 1536 images Loaded: 0.217562 seconds 49: 1473.206665, 1197.995361 avg loss, 0.000000 rate, 4.303249 seconds, 1568 images Loaded: 0.221576 seconds 50: 1468.955444, 1225.091431 avg loss, 0.000000 rate, 4.293281 seconds, 1600 images Resizing 608 x 608 try to allocate additional workspace_size = 108.69 MB CUDA allocate done! Loaded: 0.669007 seconds 51: 1829.339844, 1285.516235 avg loss, 0.000000 rate, 5.039371 seconds, 1632 images Loaded: 0.000043 seconds 52: 1823.746826, 1339.339355 avg loss, 0.000000 rate, 5.210961 seconds, 1664 images Loaded: 0.000046 seconds 53: 1814.482910, 1386.853760 avg loss, 0.000000 rate, 5.212034 seconds, 1696 images Loaded: 0.000038 seconds 54: 1809.125122, 1429.080933 avg loss, 0.000000 rate, 5.264531 seconds, 1728 images Loaded: 0.000035 seconds 55: 1799.300415, 1466.102905 avg loss, 0.000000 rate, 5.285175 seconds, 1760 images Loaded: 0.000038 seconds 56: 1790.291260, 1498.521729 avg loss, 0.000000 rate, 5.317025 seconds, 1792 images Loaded: 0.000041 seconds 57: 1783.576050, 1527.027100 avg loss, 0.000000 rate, 5.298457 seconds, 1824 images Loaded: 0.000038 seconds 58: 1769.597900, 1551.284180 avg loss, 0.000000 rate, 5.296273 seconds, 1856 images Loaded: 0.000039 seconds 59: 1758.136841, 1571.969482 avg loss, 0.000000 rate, 5.277847 seconds, 1888 images Loaded: 0.000060 seconds 60: 1745.222412, 1589.294800 avg loss, 0.000000 rate, 5.271202 seconds, 1920 images Resizing 480 x 480 try to allocate additional workspace_size = 67.74 MB CUDA allocate done! Loaded: 3.301125 seconds 61: 1082.239624, 1538.589233 avg loss, 0.000000 rate, 3.138971 seconds, 1952 images Loaded: 1.126361 seconds 62: 1071.890503, 1491.919312 avg loss, 0.000000 rate, 3.092319 seconds, 1984 images Loaded: 1.165808 seconds 63: 1063.156494, 1449.043091 avg loss, 0.000000 rate, 3.109089 seconds, 2016 images Loaded: 1.170386 seconds 64: 1053.991577, 1409.537964 avg loss, 0.000000 rate, 3.103340 seconds, 2048 images Loaded: 1.188800 seconds 65: 1042.110718, 1372.795288 avg loss, 0.000000 rate, 3.103318 seconds, 2080 images Loaded: 1.205747 seconds 66: 1033.892700, 1338.905029 avg loss, 0.000000 rate, 3.134714 seconds, 2112 images Loaded: 1.204720 seconds 67: 1022.867065, 1307.301270 avg loss, 0.000000 rate, 3.124842 seconds, 2144 images Loaded: 1.241954 seconds 68: 1013.026917, 1277.873779 avg loss, 0.000000 rate, 3.124912 seconds, 2176 images Loaded: 1.177054 seconds 69: 999.903748, 1250.076782 avg loss, 0.000000 rate, 3.137247 seconds, 2208 images Loaded: 1.195041 seconds 70: 989.606567, 1224.029785 avg loss, 0.000000 rate, 3.144312 seconds, 2240 images Resizing 480 x 480 try to allocate additional workspace_size = 67.74 MB CUDA allocate done! Loaded: 3.594387 seconds 71: 978.414246, 1199.468262 avg loss, 0.000000 rate, 3.201471 seconds, 2272 images Loaded: 1.101660 seconds 72: 964.543152, 1175.975708 avg loss, 0.000000 rate, 3.126491 seconds, 2304 images Loaded: 1.192848 seconds 73: 953.074524, 1153.685547 avg loss, 0.000000 rate, 3.121062 seconds, 2336 images Loaded: 1.233922 seconds 74: 940.636963, 1132.380737 avg loss, 0.000000 rate, 3.115576 seconds, 2368 images Loaded: 1.182876 seconds 75: 926.594055, 1111.802124 avg loss, 0.000000 rate, 3.130939 seconds, 2400 images Loaded: 1.208158 seconds 76: 915.166565, 1092.138550 avg loss, 0.000000 rate, 3.129372 seconds, 2432 images Loaded: 1.206892 seconds 77: 898.736938, 1072.798340 avg loss, 0.000000 rate, 3.166308 seconds, 2464 images Loaded: 1.170312 seconds 78: 885.443420, 1054.062866 avg loss, 0.000000 rate, 3.135046 seconds, 2496 images Loaded: 1.210277 seconds 79: 870.103638, 1035.666992 avg loss, 0.000000 rate, 3.135917 seconds, 2528 images Loaded: 1.121796 seconds 80: 854.039917, 1017.504272 avg loss, 0.000000 rate, 3.120471 seconds, 2560 images Resizing 416 x 416 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 2.655243 seconds 81: 631.755859, 978.929443 avg loss, 0.000000 rate, 2.612566 seconds, 2592 images Loaded: 1.529265 seconds 82: 616.779846, 942.714478 avg loss, 0.000000 rate, 2.524497 seconds, 2624 images Loaded: 1.641470 seconds 83: 607.249939, 909.168030 avg loss, 0.000000 rate, 2.542649 seconds, 2656 images Loaded: 1.656410 seconds 84: 595.012390, 877.752441 avg loss, 0.000000 rate, 2.530965 seconds, 2688 images Loaded: 1.589436 seconds 85: 581.292725, 848.106445 avg loss, 0.000000 rate, 2.529419 seconds, 2720 images Loaded: 1.588214 seconds 86: 571.060181, 820.401794 avg loss, 0.000000 rate, 2.559183 seconds, 2752 images Loaded: 1.601548 seconds 87: 559.255127, 794.287109 avg loss, 0.000000 rate, 2.567561 seconds, 2784 images Loaded: 1.595382 seconds 88: 546.810303, 769.539429 avg loss, 0.000000 rate, 2.564659 seconds, 2816 images Loaded: 1.595492 seconds 89: 532.396729, 745.825134 avg loss, 0.000000 rate, 2.564729 seconds, 2848 images Loaded: 1.634707 seconds 90: 521.072388, 723.349854 avg loss, 0.000000 rate, 2.561303 seconds, 2880 images Resizing 384 x 384 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.650885 seconds 91: 434.252502, 694.440125 avg loss, 0.000000 rate, 2.210872 seconds, 2912 images Loaded: 1.906415 seconds 92: 424.362640, 667.432373 avg loss, 0.000000 rate, 2.182973 seconds, 2944 images Loaded: 1.936787 seconds 93: 413.032623, 641.992371 avg loss, 0.000000 rate, 2.203982 seconds, 2976 images Loaded: 1.885590 seconds 94: 401.493866, 617.942505 avg loss, 0.000000 rate, 2.153415 seconds, 3008 images Loaded: 1.892202 seconds 95: 391.293915, 595.277649 avg loss, 0.000000 rate, 2.146084 seconds, 3040 images Loaded: 1.884520 seconds 96: 382.878326, 574.037720 avg loss, 0.000000 rate, 2.171469 seconds, 3072 images Loaded: 1.870291 seconds 97: 370.364380, 553.670410 avg loss, 0.000000 rate, 2.145424 seconds, 3104 images Loaded: 1.990863 seconds 98: 362.597534, 534.563110 avg loss, 0.000000 rate, 2.206789 seconds, 3136 images Loaded: 1.881059 seconds 99: 351.359680, 516.242798 avg loss, 0.000000 rate, 2.175958 seconds, 3168 images Loaded: 1.891335 seconds 100: 342.839050, 498.902435 avg loss, 0.000000 rate, 2.150638 seconds, 3200 images Saving weights to backup/custom-train-yolo_last.weights Resizing 608 x 608 try to allocate additional workspace_size = 108.69 MB CUDA allocate done! Loaded: 1.456913 seconds 101: 833.565125, 532.368713 avg loss, 0.000000 rate, 5.044236 seconds, 3232 images Loaded: 0.000044 seconds 102: 812.392700, 560.371094 avg loss, 0.000000 rate, 5.271101 seconds, 3264 images Loaded: 0.000041 seconds 103: 779.596924, 582.293701 avg loss, 0.000000 rate, 5.312495 seconds, 3296 images Loaded: 0.000046 seconds 104: 743.747925, 598.439148 avg loss, 0.000000 rate, 5.368146 seconds, 3328 images Loaded: 0.000040 seconds 105: 710.898804, 609.685120 avg loss, 0.000000 rate, 5.382980 seconds, 3360 images Loaded: 0.000049 seconds 106: 673.879822, 616.104614 avg loss, 0.000000 rate, 5.359816 seconds, 3392 images Loaded: 0.000031 seconds 107: 643.955200, 618.889648 avg loss, 0.000000 rate, 5.284211 seconds, 3424 images Loaded: 0.000056 seconds 108: 614.828735, 618.483582 avg loss, 0.000000 rate, 5.281869 seconds, 3456 images Loaded: 0.000046 seconds 109: 572.222168, 613.857422 avg loss, 0.000000 rate, 5.241708 seconds, 3488 images Loaded: 0.000039 seconds 110: 538.186462, 606.290344 avg loss, 0.000000 rate, 5.239917 seconds, 3520 images Resizing 384 x 384 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 2.579256 seconds 111: 200.320068, 565.693298 avg loss, 0.000000 rate, 2.193915 seconds, 3552 images Loaded: 1.867938 seconds 112: 187.832062, 527.907166 avg loss, 0.000000 rate, 2.145433 seconds, 3584 images Loaded: 1.933409 seconds 113: 177.113708, 492.827820 avg loss, 0.000000 rate, 2.235312 seconds, 3616 images Loaded: 1.885198 seconds 114: 167.025650, 460.247589 avg loss, 0.000000 rate, 2.203499 seconds, 3648 images Loaded: 1.838439 seconds 115: 155.230103, 429.745850 avg loss, 0.000000 rate, 2.210538 seconds, 3680 images Loaded: 1.835176 seconds 116: 148.263229, 401.597595 avg loss, 0.000000 rate, 2.203216 seconds, 3712 images Loaded: 1.849283 seconds 117: 140.183731, 375.456207 avg loss, 0.000000 rate, 2.150578 seconds, 3744 images Loaded: 1.905455 seconds 118: 132.190613, 351.129639 avg loss, 0.000000 rate, 2.258524 seconds, 3776 images Loaded: 1.802250 seconds 119: 124.438171, 328.460480 avg loss, 0.000000 rate, 2.195672 seconds, 3808 images Loaded: 1.977947 seconds 120: 118.055153, 307.419952 avg loss, 0.000000 rate, 2.270905 seconds, 3840 images Resizing 384 x 384 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.523360 seconds 121: 113.103004, 287.988251 avg loss, 0.000000 rate, 2.245847 seconds, 3872 images Loaded: 1.865154 seconds 122: 106.645790, 269.854004 avg loss, 0.000000 rate, 2.162207 seconds, 3904 images Loaded: 1.924662 seconds 123: 100.780869, 252.946686 avg loss, 0.000000 rate, 2.220473 seconds, 3936 images Loaded: 1.910227 seconds 124: 96.430603, 237.295074 avg loss, 0.000000 rate, 2.161338 seconds, 3968 images Loaded: 1.913990 seconds 125: 92.266151, 222.792175 avg loss, 0.000000 rate, 2.207975 seconds, 4000 images Loaded: 1.822497 seconds 126: 86.657715, 209.178726 avg loss, 0.000000 rate, 2.181968 seconds, 4032 images Loaded: 1.850749 seconds 127: 83.883553, 196.649216 avg loss, 0.000000 rate, 2.193679 seconds, 4064 images Loaded: 1.834605 seconds 128: 78.451416, 184.829437 avg loss, 0.000000 rate, 2.191081 seconds, 4096 images Loaded: 1.908137 seconds 129: 75.005966, 173.847092 avg loss, 0.000000 rate, 2.224768 seconds, 4128 images Loaded: 1.873769 seconds 130: 72.166557, 163.679031 avg loss, 0.000000 rate, 2.172353 seconds, 4160 images Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 1.792548 seconds 131: 134.969208, 160.808044 avg loss, 0.000000 rate, 4.273266 seconds, 4192 images Loaded: 0.236768 seconds 132: 128.946609, 157.621902 avg loss, 0.000000 rate, 4.263710 seconds, 4224 images Loaded: 0.200166 seconds 133: 122.032188, 154.062927 avg loss, 0.000000 rate, 4.302868 seconds, 4256 images Loaded: 0.160066 seconds 134: 116.092636, 150.265900 avg loss, 0.000000 rate, 4.316426 seconds, 4288 images Loaded: 0.242851 seconds 135: 108.910820, 146.130386 avg loss, 0.000000 rate, 4.350989 seconds, 4320 images Loaded: 0.388196 seconds 136: 104.916748, 142.009018 avg loss, 0.000000 rate, 4.369681 seconds, 4352 images Loaded: 0.244277 seconds 137: 97.996490, 137.607758 avg loss, 0.000000 rate, 4.374640 seconds, 4384 images Loaded: 0.313281 seconds 138: 90.107605, 132.857742 avg loss, 0.000000 rate, 4.351158 seconds, 4416 images Loaded: 0.146478 seconds 139: 85.265114, 128.098480 avg loss, 0.000000 rate, 4.318348 seconds, 4448 images Loaded: 0.355750 seconds 140: 79.574203, 123.246056 avg loss, 0.000000 rate, 4.298348 seconds, 4480 images Resizing 352 x 352 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.028057 seconds 141: 32.627121, 114.184158 avg loss, 0.000000 rate, 1.940968 seconds, 4512 images Loaded: 2.255652 seconds 142: 30.734022, 105.839142 avg loss, 0.000000 rate, 1.959441 seconds, 4544 images Loaded: 2.176846 seconds 143: 30.411823, 98.296410 avg loss, 0.000000 rate, 1.992478 seconds, 4576 images Loaded: 2.196345 seconds 144: 28.920910, 91.358856 avg loss, 0.000000 rate, 1.952484 seconds, 4608 images Loaded: 2.204387 seconds 145: 28.131483, 85.036118 avg loss, 0.000000 rate, 1.953267 seconds, 4640 images Loaded: 2.120347 seconds 146: 25.420998, 79.074608 avg loss, 0.000000 rate, 1.943617 seconds, 4672 images Loaded: 2.109047 seconds 147: 24.353718, 73.602516 avg loss, 0.000000 rate, 1.963106 seconds, 4704 images Loaded: 2.134952 seconds 148: 22.634462, 68.505714 avg loss, 0.000000 rate, 1.992945 seconds, 4736 images Loaded: 2.050731 seconds 149: 21.825613, 63.837704 avg loss, 0.000000 rate, 2.028410 seconds, 4768 images Loaded: 2.023473 seconds 150: 21.272646, 59.581200 avg loss, 0.000001 rate, 1.973313 seconds, 4800 images Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 1.879389 seconds 151: 43.145645, 57.937645 avg loss, 0.000001 rate, 4.394621 seconds, 4832 images Loaded: 0.183937 seconds 152: 40.459229, 56.189804 avg loss, 0.000001 rate, 4.341198 seconds, 4864 images Loaded: 0.246996 seconds 153: 38.034592, 54.374283 avg loss, 0.000001 rate, 4.387753 seconds, 4896 images Loaded: 0.268229 seconds 154: 36.227634, 52.559616 avg loss, 0.000001 rate, 4.385446 seconds, 4928 images Loaded: 0.247426 seconds 155: 34.744434, 50.778099 avg loss, 0.000001 rate, 4.400717 seconds, 4960 images Loaded: 0.285536 seconds 156: 33.606224, 49.060913 avg loss, 0.000001 rate, 4.398110 seconds, 4992 images Loaded: 0.329813 seconds 157: 31.150736, 47.269894 avg loss, 0.000001 rate, 4.337512 seconds, 5024 images Loaded: 0.234568 seconds 158: 29.132837, 45.456188 avg loss, 0.000001 rate, 4.331877 seconds, 5056 images Loaded: 0.132989 seconds 159: 28.311682, 43.741737 avg loss, 0.000001 rate, 4.287025 seconds, 5088 images Loaded: 0.325663 seconds 160: 26.235325, 41.991096 avg loss, 0.000001 rate, 4.264476 seconds, 5120 images Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 3.672322 seconds 161: 24.264271, 40.218414 avg loss, 0.000001 rate, 4.264329 seconds, 5152 images Loaded: 0.164521 seconds 162: 23.592842, 38.555859 avg loss, 0.000001 rate, 4.236755 seconds, 5184 images Loaded: 0.250285 seconds 163: 21.418007, 36.842072 avg loss, 0.000001 rate, 4.248697 seconds, 5216 images Loaded: 0.308233 seconds 164: 19.679268, 35.125790 avg loss, 0.000001 rate, 4.264140 seconds, 5248 images Loaded: 0.229786 seconds 165: 18.242283, 33.437439 avg loss, 0.000001 rate, 4.278987 seconds, 5280 images Loaded: 0.289195 seconds 166: 18.094856, 31.903181 avg loss, 0.000001 rate, 4.316477 seconds, 5312 images Loaded: 0.198735 seconds 167: 16.608103, 30.373672 avg loss, 0.000001 rate, 4.330190 seconds, 5344 images Loaded: 0.138024 seconds 168: 15.586241, 28.894930 avg loss, 0.000001 rate, 4.379158 seconds, 5376 images Loaded: 0.156272 seconds 169: 14.441493, 27.449587 avg loss, 0.000001 rate, 4.341835 seconds, 5408 images Loaded: 0.174819 seconds 170: 14.212545, 26.125883 avg loss, 0.000001 rate, 4.328561 seconds, 5440 images Resizing 352 x 352 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 2.935472 seconds 171: 7.745799, 24.287874 avg loss, 0.000001 rate, 1.993777 seconds, 5472 images Loaded: 2.086190 seconds 172: 8.435947, 22.702682 avg loss, 0.000001 rate, 1.970425 seconds, 5504 images Loaded: 2.110358 seconds 173: 8.148928, 21.247307 avg loss, 0.000001 rate, 1.957353 seconds, 5536 images Loaded: 2.058888 seconds 174: 7.831917, 19.905767 avg loss, 0.000001 rate, 1.954481 seconds, 5568 images Loaded: 2.046013 seconds 175: 6.531989, 18.568390 avg loss, 0.000001 rate, 1.969262 seconds, 5600 images Loaded: 2.129559 seconds 176: 6.906528, 17.402205 avg loss, 0.000001 rate, 2.001699 seconds, 5632 images Loaded: 1.983966 seconds 177: 6.731628, 16.335146 avg loss, 0.000001 rate, 1.966610 seconds, 5664 images Loaded: 2.051160 seconds 178: 6.180530, 15.319684 avg loss, 0.000001 rate, 1.958165 seconds, 5696 images Loaded: 2.103079 seconds 179: 6.048562, 14.392571 avg loss, 0.000001 rate, 2.008537 seconds, 5728 images Loaded: 2.083856 seconds 180: 5.860236, 13.539338 avg loss, 0.000001 rate, 1.998765 seconds, 5760 images Resizing 512 x 512 try to allocate additional workspace_size = 77.07 MB CUDA allocate done! Loaded: 2.024241 seconds 181: 7.802999, 12.965704 avg loss, 0.000001 rate, 3.483028 seconds, 5792 images Loaded: 1.022089 seconds 182: 7.911579, 12.460292 avg loss, 0.000001 rate, 3.412240 seconds, 5824 images Loaded: 1.105981 seconds 183: 7.377176, 11.951981 avg loss, 0.000001 rate, 3.413583 seconds, 5856 images Loaded: 1.038228 seconds 184: 7.362961, 11.493078 avg loss, 0.000001 rate, 3.437693 seconds, 5888 images Loaded: 1.091333 seconds 185: 6.977678, 11.041538 avg loss, 0.000001 rate, 3.427781 seconds, 5920 images Loaded: 1.023922 seconds 186: 7.140187, 10.651403 avg loss, 0.000001 rate, 3.418737 seconds, 5952 images Loaded: 1.075415 seconds 187: 6.691795, 10.255443 avg loss, 0.000001 rate, 3.408569 seconds, 5984 images Loaded: 1.089609 seconds 188: 6.532420, 9.883141 avg loss, 0.000001 rate, 3.414640 seconds, 6016 images Loaded: 1.051980 seconds 189: 6.869525, 9.581779 avg loss, 0.000001 rate, 3.405018 seconds, 6048 images Loaded: 1.199142 seconds 190: 6.749388, 9.298540 avg loss, 0.000001 rate, 3.375930 seconds, 6080 images Resizing 512 x 512 try to allocate additional workspace_size = 77.07 MB CUDA allocate done! Loaded: 3.658429 seconds 191: 5.732538, 8.941940 avg loss, 0.000001 rate, 3.421550 seconds, 6112 images Loaded: 1.115487 seconds 192: 5.763366, 8.624083 avg loss, 0.000001 rate, 3.362478 seconds, 6144 images Loaded: 1.232382 seconds 193: 5.246841, 8.286359 avg loss, 0.000001 rate, 3.339203 seconds, 6176 images Loaded: 1.142517 seconds 194: 5.499609, 8.007684 avg loss, 0.000001 rate, 3.368222 seconds, 6208 images Loaded: 1.133876 seconds 195: 4.988072, 7.705723 avg loss, 0.000001 rate, 3.387010 seconds, 6240 images Loaded: 1.150572 seconds 196: 5.495774, 7.484728 avg loss, 0.000001 rate, 3.402709 seconds, 6272 images Loaded: 1.113108 seconds 197: 4.907601, 7.227015 avg loss, 0.000002 rate, 3.443113 seconds, 6304 images Loaded: 1.120824 seconds 198: 4.873627, 6.991676 avg loss, 0.000002 rate, 3.438920 seconds, 6336 images Loaded: 1.136368 seconds 199: 5.526850, 6.845194 avg loss, 0.000002 rate, 3.422021 seconds, 6368 images Loaded: 1.133953 seconds 200: 4.459447, 6.606619 avg loss, 0.000002 rate, 3.424253 seconds, 6400 images Saving weights to backup/custom-train-yolo_last.weights Resizing 544 x 544 try to allocate additional workspace_size = 87.01 MB CUDA allocate done! Loaded: 1.277495 seconds 201: 4.939904, 6.439948 avg loss, 0.000002 rate, 4.332464 seconds, 6432 images Loaded: 0.381301 seconds 202: 4.862922, 6.282245 avg loss, 0.000002 rate, 4.275336 seconds, 6464 images Loaded: 0.438626 seconds 203: 4.085641, 6.062585 avg loss, 0.000002 rate, 4.296002 seconds, 6496 images Loaded: 0.434540 seconds 204: 4.627556, 5.919082 avg loss, 0.000002 rate, 4.313246 seconds, 6528 images Loaded: 0.468392 seconds 205: 4.200765, 5.747251 avg loss, 0.000002 rate, 4.321316 seconds, 6560 images Loaded: 0.424981 seconds 206: 4.451098, 5.617635 avg loss, 0.000002 rate, 4.323214 seconds, 6592 images Loaded: 0.446376 seconds 207: 4.543732, 5.510245 avg loss, 0.000002 rate, 4.340714 seconds, 6624 images Loaded: 0.372179 seconds 208: 3.909205, 5.350141 avg loss, 0.000002 rate, 4.316957 seconds, 6656 images Loaded: 0.403008 seconds 209: 3.634208, 5.178548 avg loss, 0.000002 rate, 4.311997 seconds, 6688 images Loaded: 0.394218 seconds 210: 3.813939, 5.042087 avg loss, 0.000002 rate, 4.294049 seconds, 6720 images Resizing 480 x 480 try to allocate additional workspace_size = 67.74 MB CUDA allocate done! Loaded: 3.749630 seconds 211: 3.707102, 4.908588 avg loss, 0.000002 rate, 3.155570 seconds, 6752 images Loaded: 1.360379 seconds 212: 3.545493, 4.772279 avg loss, 0.000002 rate, 3.085527 seconds, 6784 images Loaded: 1.362915 seconds 213: 3.313728, 4.626424 avg loss, 0.000002 rate, 3.098091 seconds, 6816 images Loaded: 1.372935 seconds 214: 3.504254, 4.514207 avg loss, 0.000002 rate, 3.131396 seconds, 6848 images Loaded: 1.366477 seconds 215: 3.435507, 4.406337 avg loss, 0.000002 rate, 3.156800 seconds, 6880 images Loaded: 1.334902 seconds 216: 3.275230, 4.293226 avg loss, 0.000002 rate, 3.140537 seconds, 6912 images Loaded: 1.384648 seconds 217: 3.738048, 4.237709 avg loss, 0.000002 rate, 3.137388 seconds, 6944 images Loaded: 1.367137 seconds 218: 3.232055, 4.137143 avg loss, 0.000002 rate, 3.154233 seconds, 6976 images Loaded: 1.359376 seconds 219: 3.323618, 4.055791 avg loss, 0.000002 rate, 3.132223 seconds, 7008 images Loaded: 1.496647 seconds 220: 3.472374, 3.997449 avg loss, 0.000002 rate, 3.134573 seconds, 7040 images Resizing 416 x 416 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.706855 seconds 221: 3.714732, 3.969177 avg loss, 0.000002 rate, 2.623176 seconds, 7072 images Loaded: 1.757894 seconds 222: 4.011533, 3.973413 avg loss, 0.000002 rate, 2.525336 seconds, 7104 images Loaded: 1.934961 seconds 223: 3.736531, 3.949725 avg loss, 0.000002 rate, 2.620534 seconds, 7136 images Loaded: 1.762234 seconds 224: 3.347547, 3.889507 avg loss, 0.000003 rate, 2.551301 seconds, 7168 images Loaded: 1.721676 seconds 225: 3.187762, 3.819332 avg loss, 0.000003 rate, 2.549750 seconds, 7200 images Loaded: 1.781864 seconds 226: 2.545011, 3.691900 avg loss, 0.000003 rate, 2.567164 seconds, 7232 images Loaded: 1.770716 seconds 227: 2.828764, 3.605587 avg loss, 0.000003 rate, 2.556094 seconds, 7264 images Loaded: 1.706427 seconds 228: 3.269938, 3.572022 avg loss, 0.000003 rate, 2.571266 seconds, 7296 images Loaded: 1.685629 seconds 229: 3.260827, 3.540902 avg loss, 0.000003 rate, 2.549249 seconds, 7328 images Loaded: 1.729444 seconds 230: 3.503815, 3.537194 avg loss, 0.000003 rate, 2.543537 seconds, 7360 images Resizing 512 x 512 try to allocate additional workspace_size = 77.07 MB CUDA allocate done! Loaded: 2.639223 seconds 231: 2.999933, 3.483467 avg loss, 0.000003 rate, 3.404676 seconds, 7392 images Loaded: 1.030125 seconds 232: 3.210326, 3.456153 avg loss, 0.000003 rate, 3.371518 seconds, 7424 images Loaded: 1.101046 seconds 233: 2.997488, 3.410287 avg loss, 0.000003 rate, 3.383016 seconds, 7456 images Loaded: 1.108105 seconds 234: 2.740766, 3.343335 avg loss, 0.000003 rate, 3.375398 seconds, 7488 images Loaded: 1.110328 seconds 235: 2.772891, 3.286290 avg loss, 0.000003 rate, 3.425432 seconds, 7520 images Loaded: 1.084188 seconds 236: 3.201218, 3.277783 avg loss, 0.000003 rate, 3.457361 seconds, 7552 images Loaded: 1.046970 seconds 237: 2.827726, 3.232777 avg loss, 0.000003 rate, 3.408544 seconds, 7584 images Loaded: 1.078200 seconds 238: 2.811347, 3.190634 avg loss, 0.000003 rate, 3.417175 seconds, 7616 images Loaded: 1.133859 seconds 239: 2.886034, 3.160174 avg loss, 0.000003 rate, 3.398966 seconds, 7648 images Loaded: 1.157345 seconds 240: 2.469579, 3.091115 avg loss, 0.000003 rate, 3.380106 seconds, 7680 images Resizing 480 x 480 try to allocate additional workspace_size = 67.74 MB CUDA allocate done! Loaded: 3.678301 seconds 241: 2.766567, 3.058660 avg loss, 0.000003 rate, 3.154204 seconds, 7712 images Loaded: 1.348319 seconds 242: 2.560811, 3.008875 avg loss, 0.000003 rate, 3.108731 seconds, 7744 images Loaded: 1.408724 seconds 243: 2.804442, 2.988432 avg loss, 0.000003 rate, 3.090909 seconds, 7776 images Loaded: 1.444137 seconds 244: 2.937446, 2.983333 avg loss, 0.000004 rate, 3.113725 seconds, 7808 images Loaded: 1.313836 seconds 245: 2.460112, 2.931011 avg loss, 0.000004 rate, 3.105529 seconds, 7840 images Loaded: 1.361812 seconds 246: 2.987369, 2.936647 avg loss, 0.000004 rate, 3.122869 seconds, 7872 images Loaded: 1.341628 seconds 247: 2.755343, 2.918516 avg loss, 0.000004 rate, 3.121588 seconds, 7904 images Loaded: 1.252970 seconds 248: 2.769065, 2.903571 avg loss, 0.000004 rate, 3.120810 seconds, 7936 images Loaded: 1.342613 seconds 249: 2.680665, 2.881281 avg loss, 0.000004 rate, 3.139040 seconds, 7968 images Loaded: 1.315283 seconds 250: 2.987723, 2.891925 avg loss, 0.000004 rate, 3.131990 seconds, 8000 images Resizing 320 x 320 try to allocate additional workspace_size = 52.43 MB CUDA allocate done! Loaded: 3.095017 seconds 251: 2.994536, 2.902186 avg loss, 0.000004 rate, 1.775438 seconds, 8032 images Loaded: 2.364468 seconds 252: 2.839226, 2.895890 avg loss, 0.000004 rate, 1.749736 seconds, 8064 images Loaded: 2.363665 seconds 253: 3.125005, 2.918802 avg loss, 0.000004 rate, 1.776987 seconds, 8096 images Loaded: 2.448214 seconds 254: 3.290020, 2.955923 avg loss, 0.000004 rate, 1.780010 seconds, 8128 images Loaded: 2.409418 seconds 255: 2.987749, 2.959106 avg loss, 0.000004 rate, 1.783683 seconds, 8160 images Loaded: 2.428998 seconds 256: 3.023077, 2.965503 avg loss, 0.000004 rate, 1.797217 seconds, 8192 images Loaded: 2.387981 seconds 257: 2.410569, 2.910010 avg loss, 0.000004 rate, 1.771482 seconds, 8224 images Loaded: 2.359795 seconds 258: 3.296492, 2.948658 avg loss, 0.000004 rate, 1.783732 seconds, 8256 images Loaded: 2.348948 seconds 259: 3.565882, 3.010381 avg loss, 0.000004 rate, 1.768584 seconds, 8288 images Loaded: 2.386864 seconds 260: 3.511684, 3.060511 avg loss, 0.000005 rate, 1.765717 seconds, 8320 images Resizing 512 x 512 try to allocate additional workspace_size = 77.07 MB CUDA allocate done! Loaded: 2.173649 seconds 261: 2.464088, 3.000869 avg loss, 0.000005 rate, 3.447791 seconds, 8352 images Loaded: 1.184983 seconds 262: 2.144822, 2.915264 avg loss, 0.000005 rate, 3.406516 seconds, 8384 images Loaded: 1.219133 seconds 263: 2.565091, 2.880247 avg loss, 0.000005 rate, 3.440608 seconds, 8416 images Loaded: 1.178984 seconds 264: 2.503429, 2.842565 avg loss, 0.000005 rate, 3.419891 seconds, 8448 images Loaded: 1.188001 seconds 265: 2.473848, 2.805693 avg loss, 0.000005 rate, 3.445765 seconds, 8480 images Loaded: 1.196070 seconds 266: 1.975374, 2.722661 avg loss, 0.000005 rate, 3.429824 seconds, 8512 images Loaded: 1.293797 seconds 267: 2.557600, 2.706155 avg loss, 0.000005 rate, 3.407241 seconds, 8544 images Loaded: 1.227031 seconds
In [29]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_last.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_last.weights...Couldn't open file: backup/custom-train-yolo_last.weights
In [30]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_final.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_final.weights...Couldn't open file: backup/custom-train-yolo_final.weights
In [31]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_4000.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_4000.weights...Couldn't open file: backup/custom-train-yolo_4000.weights
In [32]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_3000.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_3000.weights...Couldn't open file: backup/custom-train-yolo_3000.weights
In [22]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_2000.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_2000.weights...Couldn't open file: backup/custom-train-yolo_2000.weights
In [25]:
!./darknet detector map custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_1000.weights
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_1000.weights...Couldn't open file: backup/custom-train-yolo_1000.weights
In [24]:
if os.path.exists('./backup'):
!cp -r ./backup "/content/drive/MyDrive/darknet"
if not os.path.exists('./backup'):
os.makedirs('./backup')
!cp -r "/content/drive/MyDrive/darknet/backup/custom-train-yolo_final.weights" ./backup
cp: cannot stat '/content/drive/MyDrive/darknet/backup/custom-train-yolo_final.weights': No such file or directory
In [26]:
!ls -al ./backup
total 8 drwxr-xr-x 2 root root 4096 Dec 22 23:20 . drwxr-xr-x 7 root root 4096 Dec 22 23:20 ..
In [27]:
!./darknet detector test custom/custom_data.data custom/custom-train-yolo.cfg backup/custom-train-yolo_final.weights data/fruit10.jpg -dont-show
imShow('predictions.jpg')
layer filters size input output 0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF 1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF 2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF 3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF 4 Shortcut Layer: 1 5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF 6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 8 Shortcut Layer: 5 9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF 10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF 11 Shortcut Layer: 8 12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF 13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 15 Shortcut Layer: 12 16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 18 Shortcut Layer: 15 19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 21 Shortcut Layer: 18 22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 24 Shortcut Layer: 21 25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 27 Shortcut Layer: 24 28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 30 Shortcut Layer: 27 31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 33 Shortcut Layer: 30 34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 36 Shortcut Layer: 33 37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF 38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 40 Shortcut Layer: 37 41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 43 Shortcut Layer: 40 44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 46 Shortcut Layer: 43 47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 49 Shortcut Layer: 46 50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 52 Shortcut Layer: 49 53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 55 Shortcut Layer: 52 56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 58 Shortcut Layer: 55 59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 61 Shortcut Layer: 58 62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF 63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 65 Shortcut Layer: 62 66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 68 Shortcut Layer: 65 69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 71 Shortcut Layer: 68 72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 74 Shortcut Layer: 71 75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF 80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF 81 conv 21 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF 82 yolo 83 route 79 84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF 85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256 86 route 85 61 87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF 88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF 92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF 93 conv 21 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF 94 yolo 95 route 91 96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF 97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128 98 route 97 36 99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF 100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF 104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF 105 conv 21 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF 106 yolo Total BFLOPS 65.297 Allocate additional workspace_size = 52.43 MB Loading weights from backup/custom-train-yolo_final.weights...Couldn't open file: backup/custom-train-yolo_final.weights
'OpenCV > 머신비전 - 이미지 디텍팅' 카테고리의 다른 글
YOLO (gum, milk, chocolate) 추가 자료 (0) | 2020.12.24 |
---|---|
YOLO (gum, chocolate, milk / 실습) (0) | 2020.12.24 |
YOLO에 관한 이론 (0) | 2020.12.24 |
labelImg (0) | 2020.12.24 |
YOLO.py (0) | 2020.12.23 |
'OpenCV/머신비전 - 이미지 디텍팅' Related Articles
-
YOLO (gum, milk, chocolate) 추가 자료 2020.12.24
- YOLO (gum, chocolate, milk / 실습) 2020.12.24
-
YOLO에 관한 이론 2020.12.24
-
labelImg 2020.12.24
Comments